Tuning af CPH STLs komponentstrukturer for smeltbare prioritetskøer. - Kildetekst Appendix
نویسنده
چکیده
A Code 4 A.1 binary_number_system.hpp . . . . . . . . . . . . . . . . . . . . 4 A.2 binomial_node.hpp . . . . . . . . . . . . . . . . . . . . . . . . . 7 A.3 bit_manipulation.h++ . . . . . . . . . . . . . . . . . . . . . . . 13 A.4 bit_manipulation_cpu_config.hpp . . . . . . . . . . . . . . . . 18 A.5 brown_k_node.hpp . . . . . . . . . . . . . . . . . . . . . . . . . . 18 A.6 brown_r_node.hpp . . . . . . . . . . . . . . . . . . . . . . . . . . 25 A.7 direct_heap_store.hpp . . . . . . . . . . . . . . . . . . . . . . 33 A.8 has_member.hpp . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 A.9 heap_store_as_pqfw.hpp . . . . . . . . . . . . . . . . . . . . . . 43 A.10 heap_store_config.hpp . . . . . . . . . . . . . . . . . . . . . . 43 A.11 heap_store_config_alt.hpp . . . . . . . . . . . . . . . . . . . . 47 A.12 heap_store_config_leda.hpp . . . . . . . . . . . . . . . . . . . 50 A.13 heap_store_config_pqfws.hpp . . . . . . . . . . . . . . . . . . 52 A.14 heap_store_with_cormen_extract.hpp . . . . . . . . . . . . . . 55 A.15 heap_store_with_cphstl_extract.hpp . . . . . . . . . . . . . . 56 A.16 heap_store_with_fast_top.hpp . . . . . . . . . . . . . . . . . . 57 A.17 heap_store_with_vuillemin_extract.hpp . . . . . . . . . . . . 59 A.18 join_schedule_policies.hpp . . . . . . . . . . . . . . . . . . . 60 A.19 light_binomial_node.hpp . . . . . . . . . . . . . . . . . . . . . 67 A.20 ms_c_fix.hpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.21 node_config.hpp . . . . . . . . . . . . . . . . . . . . . . . . . . 76 A.22 node_proxy.hpp . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 A.23 node_with_direct_value.hpp . . . . . . . . . . . . . . . . . . . 81 A.24 node_with_facade.hpp . . . . . . . . . . . . . . . . . . . . . . . 83 A.25 node_with_indirect_value.hpp . . . . . . . . . . . . . . . . . . 88 A.26 priority_queue_framework_for_dbhs.hpp . . . . . . . . . . . . 94
منابع مشابه
Visible Evidence for the Birch and Swinnerton-dyer Conjecture for Modular Abelian Varieties of Analytic Rank Zero Amod Agashe and William Stein, with an Appendix by J. Cremona and B. Mazur
This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...
متن کاملA Study on Automatic Gait Parameter Tuning for Biped Walking Robots
.................................................................................................................... iv ÖZET ............................................................................................................................... vi ACKNOWLEDGMENTS ............................................................................................... ix TABLE OF CONTENTS............
متن کاملBounds for the least squares distance using scaled total least squares
The standard approaches to solving overdetermined linear systems Bx ≈ c construct minimal corrections to the data to make the corrected system compatible. In ordinary least squares (LS) the correction is restricted to the right hand side c, while in scaled total least squares (STLS) [14, 12] corrections to both c and B are allowed, and their relative sizes are determined by a real positive para...
متن کاملAn algorithm for solving rank-deficient scaled total least square problems
The scaled total least square (STLS) problem, introduced by B.D. Rao in 1997, unifies both the total least square (TLS) and the least square (LS) problems. The STLS problems can be solved by the singular value decomposition (SVD). In this paper, we give a rank-revealing two-sided orthogonal decomposition method for solving the STLS problem. An error analysis is presented. Our numerical experime...
متن کاملSTLS: Cutset-Driven Local Search For MPE
In this paper we present a cycle-cutset driven stochastic local search algorithm which approximates the optimum of sums of unary and binary potentials, called Stochastic Tree Local Search or STLS. We study empirically two pure variants of STLS against the state-of-the art GLS scheme and against a hybrid.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010